
Automating Feature-Oriented Domain Analysis

Fei Cao, Barrett R. Bryant, Carol C. Burt
Department of Computer and Information Sciences

University of Alabama at Birmingham
{caof, bryant, cburt}@cis.uab.edu

Zhisheng Huang, Rajeev R. Raje, Andrew M. Olson
Department of Computer and Information Science

Indiana University Purdue University at Indianapolis
{zhuang, rraje, aolson}@cs.iupui.edu

Mikhail Auguston

Computer Science Department
Naval Postgraduate School
auguston@cs.nps.navy.mil

Abstract

Feature modeling is commonly used to

capture the commonalities and variabilities of
systems in a domain during Domain Analysis.
The output of feature modeling will be some
reusable assets (components, patterns, domain-
specific language, etc.) to be fed into the
application engineering phase for ultimate
software products. But current practice lacks an
automatic approach for seamless generation of
reusable assets from feature models. This paper
presents an algorithm for generating sets of
instance descriptions (feature instances) from
feature models of a domain and applies this
algorithm in creating a Generic Feature
Modeling Environment for automating Feature-
Oriented Domain Analysis.

Keywords: Feature Modeling, Domain Analysis,
Generative Programming

1. Introduction

 Generative Programming (GP) [Czar00] has
emerged as a software development paradigm for
automatic generation of software products based
on modeling of software system families. The
distinct property of GP is it is not only about a
development for reuse in terms of building a
Generative Domain Model (GDM) for software
system families, but also about a development
with reuse in terms of using GDM to generate
concrete systems. To build a GDM, domain

analysis has to be applied to scope a system
family and to identify the commonalities,
variabilities and dependencies among family
members. A crucial outcome of the domain
analysis phase is a feature model, which is
usually represented as a feature diagram.
However, the application of feature diagrams is
quite limited, due to the fact that current practice
is not fully automated, while the size of the set of
feature instances may be expanded exponentially
(which we will see later in this paper), thus it is
difficult to apply constraint checking and other
types of computing. In order to align with the
goal of GP for the highest level of automation, to
cope with family system processing (which is
usually of a large scale), feature modeling should
be carried out in an automatic fashion to
seamlessly generate reusable assets to be used in
application engineering for constructing a family
of applications. This paper presents an algorithm
for generating the set of all feature instances
from a feature diagram and applies this algorithm
in creating a Generic Feature Modeling
Environment (GFME) for automating Feature-
Oriented Domain Analysis (FODA). This paper
is organized as follows: Section 2 briefly
describes major related research efforts. Section
3 gives the algorithm for computing feature
models. Section 4 presents the GFME created
with the Generic Modeling Environment (GME)
2000 [GME01]. Section 5 draws the conclusion
of this paper.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
Automating Feature-Oriented Domain Analysis

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Alabama at Birmingham,Department of Computer and
Information Sciences,Birmimgham,AL,35294-1170

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Proceedings of the International Conference on Software Engineering Research and Practice, SERP?03,
Las Vegas, NV, 23-26 Jun 2003

14. ABSTRACT
Feature modeling is commonly used to capture the commonalities and variabilities of systems in a domain
during Domain Analysis. The output of feature modeling will be some reusable assets (components,
patterns, domain-specific language, etc.) to be fed into the application engineering phase for ultimate
software products. But current practice lacks an automatic approach for seamless generation of reusable
assets from feature models. This paper presents an algorithm for generating sets of instance descriptions
(feature instances) from feature models of a domain and applies this algorithm in creating a Generic
Feature Modeling Environment for automating Feature-Oriented Domain Analysis.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. Related Work

 Feature models were initially introduced by
the FODA method [Kang90]. In the FODA
method, a feature is defined as an end-user-
visible characteristic of a system. This model
uses a feature diagram to represent a hierarchical
decomposition of features, which include
mandatory, alternative or optional features.
Feature constraints, stakeholders and rationales
are also incorporated in this feature model.
Czarnecki and Eisenecker [Czar00] give a more
detailed account of feature diagrams including
diagram normalization.
 The FODA method uses Prolog in a prototype
tool for doing checking over some sets of feature
values. However, features have to be stored in
the Prolog fact base first, rather than being
analyzed directly over the feature diagram, thus
the tool is not seamlessly integrated with the
visual diagram setting. Czarnecki and Eisenecker
[Czar00] also explore the possible
implementation of feature diagrams by mapping
into UML, which in turn may be used to generate
some implementation codes using such CASE
tools as Rational Rose1. The mapping process,
however, is again a manual process. Also, what
Rational Rose can generate are just some
skeleton codes, which are far from being
complete implementations.
 Feature models can be represented not only in
graphical form using feature diagrams, but also
in textual form. Van Deursen and Klint [Deur02]
propose a Feature Description Language (FDL)
for textual representation of feature diagrams.
Manipulation of features is achieved by Feature
Diagram Algebra (FDA), which consists of four
sets of rules: normalization rules, variability
rules, expansion rules and satisfaction rules. The
FDL can be fed into the a tool named
“ASF+SDF Meta-Environment” [Bran01] for
direct execution as a basis for prototype tool
support, which again is not seamlessly integrated
with graphical representations of feature
diagrams; the capacity of constraint checking is
quite limited; the FDA is separated from, rather
than integrated as part of the feature diagram; the
generation of reusable assets from FDL is not
flexible.
 Obviously for the related work mentioned in
this section, there is a gap between using feature
diagrams for feature modeling and a seamless,

1 www.rational.com

efficient generation of reusable assets. This paper
presents an approach toward bridging this gap.

3. An Algorithm for Feature Diagram
Computing

 In contrast to computing features by
transforming feature diagrams to some other
representation forms (such as UML or FDL)
first, we are going to apply the proposed
algorithm directly over the feature diagram. We
first briefly describe the representations used in
[Czar00] illustrated in Figure 1. The mandatory
feature is represented by being attached to an
edge ending with a filled circle. So the feature F
consists of both C1 and C2 in this case, and the
feature instances here are {F, C1, C2}. The
optional feature is represented by being attached
to an edge ending with an unfilled circle. So the
feature F may or may not contain C1. The
optional feature instances here are {F, C2} and
{F, C1, C2}. The alternative feature is
represented by connecting edges with an arch. So
the feature F consists of exactly one of its child
features. The alternative feature instances here
are {F, C1} and {F, C2}. Note that if C1 is
optional while C2 is mandatory, then the
alternative feature instances here are {F}, {F,
C1} and {F, C2}, because the child feature
instances derived from the C1 side contain an
empty feature. The Or feature is represented by
connecting edges with a filled arch. The Or
feature instances here are {F, C1}, {F, C2} and
{F, C1, C2}. If there is an optional child feature,
then the Or representation is actually equivalent
to the situation that all the child features are
optional, i.e., the Or feature instances will be
{F}, {F, C1}, {F, C2} and {F, C1, C2}.
 These representations can also be intermingled
in feature diagrams, such as in Figure 2. These
mixture forms can be normalized so that it is
easier to be processed. e.g., Figure 2 can be
normalized into Figure 3.
 This normalization can be performed
iteratively over all such “mixture relation” nodes
in the feature diagram. In this way, the father-
feature in the feature diagram will only be either
XOR (corresponding to alternative), or OR, or
AND in relationship to child-features.
Meanwhile, each child-feature may be either
optional or mandatory. Obviously, the
normalization process described here is fulfilled
by adding hierarchy into the original feature tree

F F FF

C2 C1 C2 C1 C2 C1
C1 C2

Mandatory Feature Optional Feature (for C1) Alternative Feature Or Feature

without loss of any common
representations. After such
performed, the feature diagr
structure as in Figure 4. The
will be applied over such
diagrams thereafter.

 Suppose each feature nod
the following data structure
loss of generality, the follow
may not be strictly consiste
C++ programming environme

struct FeatureNode{
String featurename;

Figure 2: Mixture of Featur

C1 C2

F

 F
<<feature-
relation>>

<<f
 =
C1,
diag

C1 C2

Figure 4: Variation of Fea
Figure 1: Feature Diagram Representation
ality and variability
 normalization is
am will be in the
proposed algorithm
normalized feature

e is represented as
 (note that without
ing data structure

nt with a specific
nt):

enum {XOR, OR, AND} feature-relation;
/*denotes the father-child relation */

ChildConnectionList *edges;
/*list of connections associated with
its child-feature nodes */
}

struct ChildConnectionList {
bool isMandatory ;

/*is a mandatory/optional feature*/
FeatureNode * aFeature;

/*point to a feature node*/
}

 From the data structure above we can see that
we can get access to the child-nodes of a feature
node by traversing its associated edges.
 Currently, the result of the algorithm to
compute the feature diagram is just the set of all
feature instances of a feature diagram. The result
will be represented as a list. Each element of the
list corresponds to a feature instance. Each
feature instance in turn is represented as a list,
which consists of the list of pointers to the
related feature node. The result is represented as
follows:
typedef List<FeatureInstance *> Result;
typedef List<FeatureNode *>

FeatureInstance;

 Below is the pseudo code for the algorithm.
The input parameter to the algorithm is the
pointer to the root node of a feature diagram. The
output will be all feature instances derived from
the feature diagram. Note the variables are in
italicized font while the types are in bold font.

e Representation

C3 C4

Figure 3: Normalized Feature Representation

C1 C2 C3

F

F1 F2

C4

eature-relation>>
XOR |OR |AND
C2 may be a sub-
ram

ture Diagram

Result * processFeatureDiagram (
FeatureNode *node-root)

{
create a temp1:FeatureInstance with
only node-root in it;

create a temp2: Result with only one
FeatureInstance temp1 in it;

if(node-root has no child nodes)
then return temp2;

else
if (node-root->feature-relation==AND)

{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

if corresponding child node is
“Optional”,
add an empty FeatureInstance into the
corresponding child result;

calculate the production of all the
returned child results as temp3:Result;

return the production of temp2 and
temp3;
}

else
if(node-root->feature-relation==XOR)
{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

calculate the union of those returned
child results as temp3:Result;

if there is a child node that is
“Optional”,
add an empty FeatureInstance into
temp3;

return temp3;
}

else
if(node-root->feature-relation==OR)
{
recursively call processFeatureDiagram
over each of node-root’s child-nodes,
each returning a child result;

for each of the child result returned
in the above call,
add an empty FeatureInstance into it;

get the production of all the child
results as temp3:Result;

If all child features are mandatory,
remove the empty FeatureInstance from
temp3;

return the production of temp2 and
temp3;
}

}

 Beware that a Result is actually a two-
dimension data structure. If Result A has m
FeatureInstances while Result B has n
FeatureInstances, then the union of A and B has
m+n FeatureInstances while the production of
A and B has m*n FeatureInstances. To

exemplify the above algorithm, we use ε to
represent an empty Result, × for production, ∪
for union operation in Figures 5-7, which
correspond to three types of cases for computing
the set of feature instances. Also from Figure 7
we can easily see the size of feature set may
grow exponentially (as to the extreme case where
all feature-relations are OR , the size will be 2n,
where n is the amount of leaf nodes).
 Here we put the non-leaf node (like F here)
into the feature instances in order to facilitate
constraint checking. If one non-leaf feature F is
supposed to be excluded in the final feature
instance, then its child-features should not be
included correspondingly, and we can eliminate
those feature instances from the final result by
identifying which feature instance contains
feature F, rather than by tracking down all its
child-features laboriously.

4. A Generic Feature Modeling
Environment (GFME)

 We use the Generic Modeling Environment
(GME) [GME01] to build GFME. GME is a
configurable toolkit for creating domain-specific
modeling and program synthesis environments.
The configuration is accomplished through
metamodels specifying the modeling paradigm
(modeling language) of the application domain.
The modeling paradigm defines the family of
models that can be created using the resultant
modeling environment. The metamodels
specifying the modeling paradigm are used to
automatically generate the target domain-specific
environment. GME provides the Builder Object
Network (BON) framework for building
interpreters to interpret domain models built in
the domain-specific environment. The
interpretation process can be used to generate
reusable assets for the domain engineering phase.
The BON API provides leverages for access to
the domain models, which makes the above
algorithm implementable. With all those
facilities of GME, we believe it has the best tool
support for feature modeling.
 GFME provides the modeling environment
for building feature diagrams with the structure
as described in Figure 4. Figure 8 provides the
screenshot of the GFME. Note at the lower-right
corner is the interface to specify such attributes
as the relationship with its child-nodes for a node
under focus (here “TransactionSubsystem”) in
the environment. In the same way, we can
specify the attributes for those connections

result=((F)) ×C1 × (C2 ∪ ε)

C1:
((m11
m12,
m13)
 (m21)

 F
<<AND>>
=((F, m11, m12, m13, n11, n12, n13, n14),
 (F, m11, m12, m13, n21,n22),
 (F, m11, m12, m13, n31, n32, n33),
 (F,m21, n11, n12, n13, n14),
 (F, m21, n21,n22),
 (F, m21, n31, n32, n33),
(F, m11, m12, m13),
(F, m21))
C1:

((m11, m12, m13)
 (m21))
 F
<<XOR>>

,

)

C2:
((n11, n12,
n13, n14)
 (n21,n22)
(n31, n32,
n33))

Figure 6: Compu
C2:
((n11, n12, n13, n14)
 (n21,n22)
(n31, n32, n33))

Figure 5: Computing AND result

 ε)

 F
<<OR>>

result=((F))
×(C1 ∪ C2 ∪
=….
easy to calculate,
omitted…

result=((F)) ×(C1
∪ ε) × (C2 ∪ ε)
=((F)) ∪ ((F)) ×C1
∪ ((F)) ×C2∪ ((F))
×C1×C2=….
easy to calculate,
omitted…

C1:
((m11,
m12, m13)
 (m21))

C2:
((n11, n12,
n13, n14)
 (n21,n22)
(n31, n32,
n33))

ting XOR result Figure 7: Computing OR result
Figure 8: Generic Feature Modeling Environment

between feature nodes. The dashed lines denote
the various kinds of dependencies or constraints
to be enforced between feature nodes. Currently
we just generate the set of feature instances from
feature diagram satisfying all specified
constraints. With full control of the interpretation
process (i.e., writing interpreter code via BON
API), we can generate application code from
feature diagrams on demand.

5. Conclusion

 Feature Modeling is the core part of FODA.
Our ongoing UniFrame project [Raje02] requires
feature modeling for building a generative
domain model. The reusable assets generated
from feature modeling after normalization,
expansion and constraint checking will be
output into XML files. The reusable assets serve
two purposes: 1) for clients to initiate natural-
language-like queries [Lee02] in the problem
space [Czar00]; 2) to provide a guideline
for component providers to produce component
families in the solution space [Czar00]. The
current practice of feature modeling remains at
the manual or semi-automatic level, which
hinders it from becoming widely applied. This
paper applies normalization over the traditional
feature diagram and presents an algorithm to
generate complete feature instances from a
feature diagram under constraints. The algorithm
is adopted in GFME, which provides an
efficient, automatic FODA environment.

Acknowledgements. This research is
supported by the U. S. Office of Naval Research
under the award number N00014-01-1-0746.

References

[Bran01] M.G.J. van den Brand, J. Heering, H.
A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P.A. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, J. Visser. The ASF+SDF Meta-
Environment: a Component-Based Language
Development Environment. Compiler
Construction (CC '01), vol. 2027, Lecture Notes
in Computer Science, pp. 365-370, Springer-
Verlag, 2001.

[Czar00] K. Czarnecki, U.W. Eisenecker.
Generative Programming: Methods, Tools, and
Applications. Addison Wesley, 2000.

[Deur02] A. van Deursen and P. Klint. Domain-
specific Language Design Requires Feature
Descriptions. Journal of Computing and
Information Technology 10(1), pp. 1-17, 2002.

[GME01] GME 2000 User's Manual, Version
2.0. ISIS, Vanderbilt University, 2001.

[Kang90] K.C. Kang, S. G. Cohen, J. A. Hess,
W. E. Novak, and A. S. Peterson. Feature-
oriented Domain Analysis (FODA) Feasibility
Study. Technical Report, CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon
University, 1990.

[Lee02] B.-S. Lee, B. R. Bryant. Contextual
Processing and DAML for
Understanding Software Requirements
Specifications. Proceedings of COLING 2002,
the 19th International Conference on
Computational Linguistics, pp. 516-522, 2002.

[Raje02] R. R. Raje, M. Auguston, B. R. Bryant,
A. M. Olson, C. C. Burt. A Quality of Service-
Based Framework for Creating Distributed
Heterogeneous Software Components.
Concurrency and Computation: Practice and
Experience 14, pp. 1009-1034, 2002.

